Comparison of correlation analysis techniques for irregularly sampled time series
نویسندگان
چکیده
Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernelbased methods. In a thorough benchmark test we investigate the performance of these techniques. All methods have comparable root mean square errors (RMSEs) for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF) for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF) the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the highfrequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods. We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we Correspondence to: K. Rehfeld ([email protected]) attribute to the long time scales of the common variability. The persistence time (memory) is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleodata.
منابع مشابه
Wavelet analysis of GRACE K-band range rate measurements related to Urmia Basin
Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...
متن کاملScalable Linear Causal Inference for Irregularly Sampled Time Series with Long Range Dependencies
Linear causal analysis is central to a wide range of important application spanning finance, the physical sciences, and engineering. Much of the existing literature in linear causal analysis operates in the time domain. Unfortunately, the direct application of time domain linear causal analysis to many real-world time series presents three critical challenges: irregular temporal sampling, long ...
متن کاملEstimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series.
A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bi...
متن کاملSpectral Analysis of Irregularly Sampled Data with Time Series Models
Slotted resampling transforms an irregularly sampled process into an equidistant missing-data problem. Equidistant resampling inevitably causes bias, due to aliasing and the shift of the irregular observation times to an equidistant grid. Taking a slot width smaller than the resampling time can diminish the shift bias. A dedicated estimator for time series models of multiple slotted data sets w...
متن کاملUncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application
We study the problem of estimating the time delay between two signals representing delayed, irregularly sampled and noisy versions of the same underlying pattern. We propose and demonstrate an evolutionary algorithm for the (hyper)parameter estimation of a kernel-based technique in the context of an astronomical problem, namely estimating the time delay between two gravitationally lensed signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011